株式会社アステック

第42回 分子生物学会 展示ブース 138

タイムラプス撮影受託サービス

いのちをつくる細胞は動いている

細胞の動きを知るためには様々な施設と高い培養技術が必要です 独自開発した リアルタイム培養細胞観察システム を用いて 刻一刻と変化する細胞の表情をとらえることを可能にしました

リアルタイム培養細胞観察システム CCM-XYZ 二波長励起モデル

- 培養庫内温度分布±0.3°C以内・湿度95%以上
- 低酸素濃度(1%)の培養環境を設定可能
- 細胞形態像と蛍光観察像をマルチカラー合成
- 一定の時間間隔で複数箇所を撮影し動画化

低酸素濃度環境下でのモニタリング

破骨前駆細胞は多数の細胞が融合することで巨大化します。 酸素濃度が低い状態が継続すると融合が抑制されるだけでなく 細胞死誘導など酸素濃度によって異なる挙動を示すことが 確認されました。

通常酸素濃度

細胞融合促進 多核細胞が出現

★低酸素濃度

細胞融合抑制 細胞死が誘導

撮影費用の一例

撮影条件・使用細胞例	撮影費用
正常ヒト繊維芽細胞 (3箇所4日間・明視野のみ)	¥ 80,000
脂肪組織由来幹細胞 (2箇所4日間・明視野のみ)	¥ 150,000
蛍光染色した繊維芽細胞 (6箇所1日間・明視野と1蛍光)	¥ 250,000
株化神経細胞 <mark>※低酸素培養</mark> (5箇所3日間・明視野と1蛍光)	¥ 400,000

細胞科学研究所

福岡県糟屋郡須恵町上須惠53-1 TEL:(092)-933-8889 FAX:(092)-933-8891

E-mail:info@astec-bio.com(担当:緒方)

本社

福岡県糟屋郡志免町南里4-6-15 TFI:(092)-935-5585 FAX:(092)-936-6613 研究所HP: https://www.astec-csl.com

株式会社アステック

第42回 分子生物学会 展示ブース 138

動物細胞を用いた評価試験

清浄度の高いクリーンルーム 最高の細胞培養環境で 評価試験をおこないます

評価対象一覧(一例です)

分野	使用細胞	測定対象
神経の成長	初代培養神経細胞 NG108・PC12等	ベータアミロイドの定量 神経突起伸長の計測
ダイエット効果	白色・褐色脂肪細胞 3T3-L1等	脂質合成酵素の定量 細胞内脂質の計測
美白効果	ヒトメラノサイト G361・B16等	チロシナーゼ活性測定 メラニン量の計測
アレルギー	初代培養肥満細胞 RBL-2H3・KU812等	分泌ヒスタミン・セロトニン定量 エンドサイトーシス測定
キズの治癒	皮膚繊維芽細胞 NIH/3T3・FRSK等	創傷(スクラッチ)アッセイ
骨の形成	骨芽細胞 MC3T3-E1・Saos-2等	ALP活性測定 オステオカルシンの定量
骨粗しょう症	破骨細胞 Raw264・U937等	オステオアッセイプレート計測 (TRAP・コッサ染色など)
ファゴサイトシス	マクロファージ・好中球 THP-1・J774.1等	ファゴサイトーシスアッセイ 貪食ラテックスビーズの計数
薬物代謝	肝臓細胞 HepG2・HuH-7等	アルブミンの定量 薬物代謝関連タンパク質の解析
脱毛・育毛・発毛	毛乳頭細胞 毛母細胞	血管新生因子VEGFの定量 繊維芽増殖因子FGF-7の定量
肌のハリ	皮膚繊維芽細胞 血管内皮細胞	コラーゲン・エラスチンの定量 Tie2活性化測定

